The principle (*) of Sierpinski and a question of Miller

Osvaldo Guzmán González

Universidad Nacional Autónoma de México

February 1, 2016

Osvaldo Guzmán González (Universidad NaciThe principle (*) of Sierpinski and a question

• The *principle* (*) *of Sierpinski* is the following statement:

- The *principle* (*) of *Sierpinski* is the following statement:
- There is a family of functions $\{\varphi_n : \omega_1 \longrightarrow \omega_1 \mid n \in \omega\}$ such that for every $I \in [\omega_1]^{\omega_1}$ there is $n \in \omega$ for which $\varphi_n[I] = \omega_1$.

- The *principle* (*) of *Sierpinski* is the following statement:
- There is a family of functions $\{\varphi_n : \omega_1 \longrightarrow \omega_1 \mid n \in \omega\}$ such that for every $I \in [\omega_1]^{\omega_1}$ there is $n \in \omega$ for which $\varphi_n[I] = \omega_1$.
- Sierpinski showed this is a consequence of the Continuum Hypothesis.

- The *principle* (*) of *Sierpinski* is the following statement:
- There is a family of functions $\{\varphi_n : \omega_1 \longrightarrow \omega_1 \mid n \in \omega\}$ such that for every $I \in [\omega_1]^{\omega_1}$ there is $n \in \omega$ for which $\varphi_n[I] = \omega_1$.
- Sierpinski showed this is a consequence of the Continuum Hypothesis.

• Arnie Miller studied this principle on his article "The onto mapping of Sierpinski" and he proved the following:

Theorem (Miller)

The following are equivalent:

The principle (*) of Sierpinski
 i.e. There is a family of functions {φ_n : ω₁ → ω₁ | n ∈ ω} such that for every I ∈ [ω₁]^{ω₁} there is n ∈ ω for which φ_n[I] = ω₁.

The set X above resembles a Luzin set (a Luzin set is a subspace of ω^{ω} that has countable intersection with every meager set). For the purpose of this talk, we will call those sets *weak Luzin sets* (note that every Luzin set is a weak Luzin set).

• Thus we have the following implications:

- 一司

Thus we have the following implications:

• There is a Luzin set \longrightarrow There is a weak Luzin set • \downarrow $\operatorname{non}(\mathcal{M}) = \omega_1$ (there is a non-meager set of size ω_1) • Thus we have the following implications:

```
There is a Luzin set \longrightarrow There is a weak Luzin set

\downarrow

non (\mathcal{M}) = \omega_1

(there is a non-meager set of size \omega_1)
```

• Can this implications be reversed?

• Thus we have the following implications:

```
There is a Luzin set \longrightarrow There is a weak Luzin set

\downarrow

non (\mathcal{M}) = \omega_1

(there is a non-meager set of size \omega_1)
```

• Can this implications be reversed?

 Miller proved that there is a weak Luzin set in the Miller model, while a theorem of Judah and Shelah says that there are no Luzin sets in such model, so the first implication can not be reversed.

Problem

Does non $(\mathcal{M}) = \omega_1$ imply that there is a weak Luzin set?

• The answer is...

Problem

Does non $(\mathcal{M}) = \omega_1$ imply that there is a weak Luzin set?

- The answer is...
- (Dramatic pause)

Problem

Does non $(\mathcal{M}) = \omega_1$ imply that there is a weak Luzin set?

- The answer is...
- (Dramatic pause)
- (an even more dramatic pause)

Problem

Does non $(\mathcal{M}) = \omega_1$ imply that there is a weak Luzin set?

- The answer is...
- (Dramatic pause)
- (an even more dramatic pause)

Yes!

We will need the following lemma:

Lemma

If non $(\mathcal{M}) = \omega_1$ then there is a family $X = \{f_\alpha \mid \alpha < \omega_1\}$ with the following properties:

- **1** Each f_{α} is an infinite partial function from ω to ω .
- 2 The set $\{ dom(f_{\alpha}) \mid \alpha < \omega_1 \}$ is an almost disjoint family.
- **③** For every $g: \omega \longrightarrow \omega$ there is $\alpha < \omega_1$ such that $f_{\alpha} \cap g$ is infinite.

Proof.

Let $\omega^{<\omega} = \{s_n \mid n \in \omega\}$ and we define $H : \omega^{\omega} \longrightarrow Partial(\omega^{\omega})$ where the domain of H(f) is $\{n \mid s_n \sqsubseteq f\}$ and if $n \in dom(H(f))$ then $H(f)(n) = f(|s_n|)$. It is easy to see that if $f \neq g$ then dom(H(f)) and dom(H(g)) are almost disjoint.

Given $g: \omega \longrightarrow \omega$ we define $N(g) = \{f \in \omega^{\omega} \mid |H(f) \cap g| < \omega\}$. It then follows that N(g) is a meager set since $N(g) = \bigcup_{k \in \omega} N_k(g)$ where $N_k(g) = \{f \in \omega^{\omega} \mid |H(f) \cap g| < k\}$ and it is easy to see that each $N_k(g)$ is a nowhere dense set. Finally, if $X = \{h_{\alpha} \mid \alpha < \omega_1\}$ is a non-meager set then H[X] is the family we were looking for.

With the previous lemma we can answer Miller's question:

Theorem

If non $(\mathcal{M}) = \omega_1$ then the principle (*) of Sierpinski is true.

Proof.

Let $X = \{f_{\alpha} \mid \alpha < \omega_1\}$ be a family as in the previous lemma. We will build a weak Luzin set $Y = \{h_{\alpha} \mid \alpha < \omega_1\}$. For simplicity, we may assume $\{dom(f_n) \mid n \in \omega\}$ is a partition of ω .

For each $n \in \omega$, let h_n be any constant function. Given $\alpha \ge \omega$, enumerate it as $\alpha = \{\alpha_n \mid n \in \omega\}$ and then we recursively define $B_0 = dom(f_{\alpha_0})$ and $B_{n+1} = dom(f_{\alpha_n}) \setminus (B_0 \cup ... \cup B_n)$. Clearly $\{B_n \mid n \in \omega\}$ is a partition of ω . Let $h_{\alpha} = \bigcup_{n \in \omega} f_{\alpha_n} \upharpoonright B_n$, it then follows that $Y = \{h_{\alpha} \mid \alpha < \omega_1\}$ is a weak Luzin set. • It is not hard to see that the weak Luzin set constructed in the previous proof is meager. One may then wonder if it is possible to construct a non-meager weak Luzin set from non $(\mathcal{M}) = \omega_1$.

- It is not hard to see that the weak Luzin set constructed in the previous proof is meager. One may then wonder if it is possible to construct a non-meager weak Luzin set from non $(\mathcal{M}) = \omega_1$.
- However this is not the case. This will be achieved by using Todorcevic's method of forcing with models as side conditions.

Definition

We define the forcing \mathbb{P}_{cat} as the set of all $p = (s_p, \overline{M}_p, F_p)$ with the following properties:

- $s_p \in \omega^{<\omega}$ (this is usually referred as *the stem* of *p*).
- *M_p* = {*M*₀, ..., *M_n*} is an ∈-chain of countable elementary submodels of H((2^c)⁺⁺).
- $s_p \cap F_p(M_i) = \emptyset$ for every $i \leq n$.
- $F_{p}(M_{i}) \notin M_{i}$ and if i < n then $F_{p}(M_{i}) \in M_{i+1}$.
- $F_p(M_i)$ is a Cohen real over M_i (i.e. if $Y \in M_i$ is a meager set then $F_p(M_i) \notin Y$).

Finally, if
$$p, q \in \mathbb{P}_{cat}$$
 then $p \leq q$ if $s_q \subseteq s_p$, $\overline{M}_q \subseteq \overline{M}_p$ and $F_q \subseteq F_p$.

Theorem

The \mathbb{P}_{cat} forcing has the following properties:

- It is proper (hint: apply the "usual side conditions trick").
- **2** If X is a non-meager set then \mathbb{P}_{cat} adds a function that has finite intersection with uncountably many elements of X.
- IP_{cat} does not destroy category (i.e. P_{cat} does not turn the ground model into a meager set).
- Moreover, the iteration of the \mathbb{P}_{cat} forcing does not destroy category.

Theorem

If the existence of an inaccessible cardinal is consistent, then so it is the following statement: non $(\mathcal{M}) = \omega_1$ and every weak Luzin set is meager.

Proof.

Let μ be an inaccessible cardinal, we perform a countable support iteration $\{\mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} \mid \alpha < \mu\}$ in which \mathbb{Q}_{α} is forced by \mathbb{P}_{α} to be the \mathbb{P}_{cat} forcing. It is easy to see that if $\alpha < \mu$ then \mathbb{P}_{α} has size less than μ so it has the μ -chain condition and then \mathbb{P}_{μ} has the μ -chain condition. The result then follows by the previous results.

Osvaldo Guzmán González (Universidad NaciThe principle (*) of Sierpinski and a question